Random Effects in Generalized Linear Mixed Models
نویسندگان
چکیده
In this chapter, we examine the use of special forms of correlated random e ects in the generalized linear mixed model (GLMM) setting. A special feature of our GLMM is the inclusion of random residual e ects to account for lack of t due to extra variation, outliers and other unexplained sources of variation. For random e ects, we consider, in particular, the correlation structure and improper priors associated with the autoregressive (AR) model of Ord (1975) and the conditional autoregressive (CAR) model of Besag (1974). We give conditions for the propriety of the posterior distribution of the GLMM when the xed e ects have a constant improper prior and the random e ects have a possibly improper conditional autoregressive prior. Several examples of exponential families as well as computational details for Markov chain Monte Carlo simulation are also presented.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملhglm: A Package for Fitting Hierarchical Generalized Linear Models
We present the hglm package for fitting hierarchical generalized linear models. It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the model.
متن کاملAnalyzing Binomial Data in a Split-Plot Design: Classical Approach or Modern Techniques?
Binomial data are often generated in split-plot experimental designs in agricultural, biological, and environmental research. Modeling non-normality and random effects are the two major challenges in analyzing binomial data in split-plot designs. In this study, seven statistical methods for testing whole-plot and subplot treatment effects using mixed, generalized linear, or generalized linear m...
متن کاملStatistical Inference in Generalized Linear Mixed Models by Joint Modelling Mean and Covariance of Non-Normal Random Effects
Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs s...
متن کاملGoodness-of-fit tests in mixed models
Mixed models, with both random and fixed effects, are most often estimated on the assumption that the random effects are normally distributed. In this paper we propose several formal tests of the hypothesis that the random effects and/or errors are normally distributed. Most of the proposed methods can be extended to generalized linear models where tests for non-normal distributions are of inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998